The gut-brain axis along aging

The gut microbiota plays an important role in the physiology of the central nervous system and inflammation. Brain-gut communication enables bidirectional modulatory effects between the microbiota and the central nervous system, which might be involved in physiological and pathological events. Changes in the intestinal microbiota during aging show a decrease in the Firmicutes/Bacteroidetes ratio, presenting a higher proportion of Bacteroides, Clostridium, and Proteobacteria, and a decrease in Actinobacteria compared to young adults.

We are cultivating and analyzing thousands of bacterias from the Chilean population, in order to find new strains with positive effect over inflammation and aging.

Restoring the gut microbiome for healthy aging

Our research focuses on the search for bacterial consortia with effect over the aging process. Our aim is to restore the intestinal microbiota during aging, converting it into a healthier and more beneficial intestinal microbiota. For the generation of bacterial consortia, we have generated a bank of bacteria isolated from the intestinal microbiota of healthy Chileans with a wide diversity of bacteria strains. Hundreds of these isolated and taxonomically classified bacteria has been evaluated for their probiotic properties and we are currently generating consortia for in vitro and in vivo studies. In addition, we are studying the gut microbiota in aged people, trying to correlate changes in their composition associated to the risk to develop brain conditions.

People involved

Paulina Calderón


Biochemist, Ph.D. in Molecular Biosciences from Universidad Andrés Bello. Studying the bacteria of the human intestinal microbiota for the elaboration of bacterial consortia with therapeutic effects on people’s health.

Related Publications

Neuronal activity-dependent ATP enhances the pro-growth effect of repair Schwann cell extracellular vesicles by increasing their miRNA-21 loading

Cristian Saquel, Romina J. Catalan, Rodrigo Lopez-Leal, Ramon A. Ramirez, David Necuñir, Ursula Wyneken, Christophe Lamaze and Felipe A. Court

Front. Cell. Neurosci., 23 September 2022, Sec. Non-Neuronal Cells

Read More

An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research

Rachel A. Kline, Lena Lößlein, Dominic Kurian, Judit Aguilar Martí, Samantha L. Eaton,
Felipe A. Court, Thomas H. Gillingwater, and Thomas M. Wishart

Cells 202211(17), 2653;

Read More

Commentary on “PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons”

Macarena S. Arrázola, Court FA.

Neural Regen Res. 2023 Feb;18(2):341. DOI: 10.4103/1673-5374.346543

PMID: 35900426

Read More

Multiple events case–control study in a prospective cohort to identify systemic, cellular, and molecular biomarkers of obesity‑induced accelerated aging in 30‑years‑olds: the ObAGE study protocol

Correa‑Burrows P, Burrows R, Albala C, Court FA, Salech F, Sanhueza G and  Gonzalez‑Billault C.

BMC Geriatr. 2022 May 2;22(1):387. doi: 10.1186/s12877-022-03032-4.

PMID: 35501766

Read More

Related News

Trabajo colaborativo de académicos U. Mayor usa moscas para entender las consecuencias del bullying

El Dr. Gonzalo Olivares, del Centro de Biología Integrativa, se encuentra desarrollando el proyecto junto al Dr. Felipe Court, director del CIB y el Dr. Esteban Calvo, director del Centro de…

Investigador expondrá los avances de su trabajo para reparar daños al sistema nervioso

El Dr. Felipe Court, director del Centro de Biología Integrativa U. Mayor, presentará estos hallazgos en una charla Magistral que dará en el V Congreso Chileno de Cirugía de la Mano y Microcirugía,…

Other Categories